Course Title: Differential Equations and Vector Calculus

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks

Unless otherwise mentioned the symbols have their usual meaning

1. Answer any FIVE of the following questions:

a) Illustrate by an example that a continuous function may not satisfy Lipschitz condition on a rectangle.
b) If $y_{1}=\sin 3 x$ and $y_{2}=\cos 3 x$ then find the Wronskian of y_{1} and y_{2}.
c) Solve: $4 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-3 y=0$.
d) Test the continuity of the vector function $\vec{f}(t)=|t| \hat{\imath}-\sin (t) \hat{\jmath}+(1+\cos t) \widehat{k}$ at $\mathrm{t}=0$.
e) Show that $\mathrm{x}=0$ is a regular singular point of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-(x+$ 1) $y=0$.
f) Find the equilibrium points of the system $\frac{d x}{d t}=y^{2}-7 x+12, \frac{d y}{d t}=x-y$.
g) Use Wronskian to show that the functions $f(x)=x, g(x)=x^{2}, h(x)=x^{3}$ are independent.
h) Find equilibrium points of the system $\dot{x}=x+x^{3}$.
2. Answer any FOUR of the following questions:
a) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}-2 y=x^{3}$ by the method of variation of parameters.
b) Prove that the two solutions $y_{1}(x)$ and $y_{2}(x)$ of the equation $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=0, x \in$ (a, b) are linearly independent if and only if their Wronskian is not zero at some point x_{0} on (a, b).
c) Solve the equation $\left(D^{2}-2 D+1\right) y=x e^{x}$ by the method of undetermined coefficients.
d) Are these three vectors $7 \hat{\imath}-9 \hat{\jmath}+11 \hat{k}, 3 \hat{\imath}+\hat{\jmath}-5 \hat{k}, 5 \hat{\imath}-21 \hat{\jmath}+37 \hat{k}$ coplanar or not?
e) Find the solution of the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0$ satisfying the conditions $\mathrm{y}(0)=1$ and $\mathrm{y}^{\prime}(0)=4$.
f) Find the Power series solution of the differential equation $\frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+3 y=0$ about $x=0$.
3. Answer any ONE of the following questions:
a) i) Solve: $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \log (1+x)$
ii) A particle moves along the curve $x=e^{-2 t}, y=2 \cos 2 t, z=2 \sin 3 t$. Determine the velocity and the acceleration of the particle at any time t and their magnitude at $=0$.
iii) Solve: $\frac{d x}{x^{2}+y^{2}+y z}=\frac{d y}{x^{2}+y^{2}-x z}=\frac{d z}{z(x+y)} 2$
b) i) Find the solution of the system: $\frac{\mathrm{dx}}{d t}=x-5 y, \quad \frac{d y}{d t}=x-3 y$ satisfying the initial conditions $x(0)=1, y(0)=1$. Describe the beheaviour of the solution as $t \rightarrow \infty$.
ii) Evaluate $\int F$. $d \vec{r}$ where $F(x, y)=(6 x-2 y) \hat{\imath}+x^{2} \hat{\jmath}$ for the curve C where C is the line segment from $(6,-3)$ to $(6,3)$.

